

science overview

 substantial rise in research on direct and indirect impacts of climate forcing and feedbacks between groundwater and climate

uncertainty

not just models but conceptual understanding

complexity

diversity of groundwater-climate interactions

intractability

indirect (climate change) vs direct human activity

groundwater storage

low storage systems
 (e.g. deeply
 weathered crystalline
 rock aquifers) are
 especially climate
 dependent –
 requiring regular
 recharge

direct impacts - precipitation

 historically, timing of recharge related to modes of climate variability historically (e.g. ENSO, PDO)

Gurdak et al. (2012); Taylor et al. (2013)

• projections of diffuse recharge are highly uncertain due to choice of GCM, downscaling, emissions, and recharge model Döll (2009); Allen et al. (2010); Holman et al. (2011); Stoll et al. (2011); Jackson et al. (2011); Crosbie et al. (2012); Hiscock et al. (2012)

intensification of precipitation under climate change

- <u>fewer</u>, low and medium intensity precipitation events
- more, very heavy precipitation events (i.e., "extreme events")

Allan & Soden, 2008. Science 321: 1481-1484.

"It is likely that the frequency of heavy precipitation... will increase in the 21st century over many areas of the globe. This is particularly the case in... tropical regions" IPCC SREX (p. 10, 18 November 2011)

recharge and hydrological extremes

• in contrast to models, field observations suggest extreme (heavy) rainfall favours groundwater recharge

Owor et al. (2009); Favreau et al. (2009); Döll (2009);

Crosbie et al. (2012); Taylor et al. (2013)

 more intensive rainfall means longer droughts (more frequent floods) and more variable and lower soil moisture (food security?)

Taylor et al. (2013)

direct impacts - snow & ice

• ".. changes in snowmelt regimes tend to reduce the seasonal duration and magnitude of recharge" Tague & Grant (2009);

Declining snow and ice extent Increased seasonality in groundwater/ surface water interactions Tague & Grant (2009); Sultana & Coulibaly (2010) Allen et al. (2010)

indirect impacts – land-use change

- "... Land-Use Change may exert a stronger influence on terrestrial hydrology than climate change." Scanlon et al. (2006); Leblanc et al. (2008)
- "... recharge rates under cropland increased by one to two orders of magnitude compared with native perennial vegetation." Cartwright et al. (2007); Scanlon et al. (2010); Leblanc et al. (2012)

groundwater depletion

 groundwater depletion detected from in situ and satellite data in California Central Valley, North China Plain, High Plains Aquifer, NW India and Bangladesh Rodell et al. (2009); Chen et al. (2010); Longuevergne et al. (2010);

Famiglietti et al. (2011); Scanlon et al. (2012); Shamsudduha et al. (2012)

groundwater accumulation

• irrigation return flows from surface-water fed irrigation provide "anthropogenic recharge" to: Nile Basin, Tigris-Euphrates, lower Indus, and SE China

Döll et al. (2012)

groundwater feedbacks to climate

• "... groundwater primarily influences climate through contributions to soil moisture. Irrigation can transform areas from moisture-limited to energy-limited evapotranspiration thereby influencing water and energy budgets."

 increases downwind precipitation

Douglas et al. (2009); DeAngelis et al. (2010); Kustu et al. (2011); Lo & Famiglietti (in review)

groundwater & sea-level rise (SLR)

• "The impacts of seawater intrusion have been observed most prominently in association with intensive groundwater abstraction around high population densities" Taniguchi (2011)

• "Coastal aquifers under very low hydraulic gradients such as the Asian mega-deltas are theoretically sensitive to SLR but, in practice, are expected in coming decades to be more severely impacted by saltwater inundation from storm surges than SLR." Ferguson & Gleeson (2012)

groundwater depletion & SLR

 "Groundwater depletion contributes to SLR through a net transfer of freshwater from long-term terrestrial groundwater storage to active circulation near the earth's surface and its eventual transfer to oceanic stores."

- $204 \pm 30 \text{ km}^3/\text{year} (0.57 \pm 0.09 \text{ mm/year}) \text{ flux-based method}$ Wada et al. (2012)
- 145 ± 39 km³/year (0.4 ± 0.1 mm/year) volume-based method
 Konikow (2011)

legal and policy questions/challenges

- Groundwater represents an invaluable distributed store of freshwater to enable adaptation to climate variability and change... but for whom?
- Substantial uncertainty in predictive models how to assess impact or assign responsibility?

 How to untangle direct impacts of human activity (over-abstraction, land-use change) from indirect (climate change) impacts on groundwater?

