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Unit Overview 
This unit starts the first half of the module (Units 1–4), which provides a 
solid foundation to game theory and an introduction to the study of firms’ 
behaviour in strategic interactions. Each of these units contains two parts: 
theory and its applications. This aims to broaden and deepen your under-
standing in how to apply game theory in diverse areas, such as economics, 
finance and management. Unit 1 starts with the fundamental concepts of 
game theory by introducing normal-form games and discussing pure- and 
mixed-strategy Nash equilibrium in finite games. Then we apply the concept 
of Nash equilibrium to two typical oligopoly models in the market: the 
Cournot and Bertrand models.  

Learning outcomes 

When you have completed the unit and its readings, you will be able to: 

• state the reasoning of dominant strategy equilibrium in simple games 
• explain the basic equilibrium concepts such as Nash equilibrium (pure 

and mixed)  
• find pure- and mixed-strategy Nash equilibrium in simple games 
• discuss the sufficient conditions and intuition of the existence of Nash 

equilibrium 
• solve simple oligopoly games (Cournot and Bertrand). 

 Reading for Unit 1 

Robert Gibbons (1992) A Primer in Game Theory. Harlow, UK, Pearson 
Education. Chapter 1 ‘Static games of complete information’. 
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1.1 Normal (Strategic) Form Game and Iterated Deletion  
Game theory is a unique and revolutionary part of microeconomics. It 
adopts ideas from various disciplines (including economics, mathematics, 
philosophy, psychology and other social and behavioural sciences), and de-
velops into a mathematical application in determining optimal outcomes of 
conflict and cooperative strategies among reasonably rational agents. It has 
been applied in many fields for decision-making processes outside academic 
studies, such as auction formats, political decisions, business strategies, etc. 
For instance, a computer manufacturer may need to decide whether to 
launch its new computer immediately to gain a competitive edge or to pro-
long the testing period of its new functions. This kind of decision can be 
extended into different areas and usually involves a number of parties. Deci-
sion makers can use game theory as a tool to map out possible strategies 
with corresponding results and make rational decisions. I hope that you will 
enjoy learning about such an interesting decision-making process in the first 
half of this module. 

In general, games are divided into two branches: cooperative and non-coop-
erative games. This module focuses on the non-cooperative games that 
mainly examine how players interact with each other in order to achieve 
their own goals (no binding agreements). You will evaluate some simplified 
and fundamental examples in the real-world economic and financial envi-
ronments, such as wages and employment in a unionised firm, auctions, 
sequential bargaining, etc. In Unit 1, you focus on simultaneous-move (so-
called static) games of complete information. By complete information we 
mean that all aspects of the game structure are common knowledge among 
all the players. There is no private information, such as each player’s payoff 
function, the timing and other information of the game. I will discuss all of 
this in more detail later on in this unit. 

In any game, the outcome depends on the strategy chosen by each player, 
which is the key to the whole of game theory. You should bear in mind the 
following points from now on. 

• Strategy – a complete contingent plan that specifies an action for every 
information set (a particular set of possible moves) of the player. 

• Player’s decision problem – the choice of a strategy that a player thinks 
would counter the best strategies adopted by the other players.  

Osborne and Rubinstein (1994) summarise the characteristics of the strategic 
game as a model of an event that occurs only once: 

• each player knows the details of the game and the fact that all players 
are rational  

• each player is unaware of the choices of other players 
• each player chooses the strategy simultaneously and independently. 
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 Reading 1.1 

Please read Sections 1.1.A and 1.1.B, pp. 2–8 of your key text by Gibbons. This illustrates 
some basic ideas of the normal form presentation and iterated elimination of strictly 
dominated strategies.  

 Gibbons has generalised the case and provided a formal definition of a normal-form 
game. To understand that definition, you need to define three essential elements of a 
normal-form game: 

1. A finite set of players,  }1,  2{ ,  ,I n=   

2. For each player i, a finite set of strategies, Si, (where . A strategy, Si , is a 

member of the set of strategies, Si.) 
3. For each player i, there is a payoff function, 

1 2:i Iu S S S R× × → , }1,  2{ ,  ,I n=   

that associates with each strategy combination  ( )1 2, , ns s s , a payoff 

( )1 2, , ,i nu s s s  for player i.  

 

In any strategic interaction, it is crucial for players to consider not only what 
their opponents will do, but also what opponents know, which strategies 
their opponents will choose, etc. Indeed, many games can be simplified 
through iterated deletion of dominated strategies based on common 
knowledge and rationality. Gibbons explains the term of common 
knowledge on page 7 of the key text. In a two-player game, common belief 
in (or knowledge of) rationality means that player 1 believes player 2 is ra-
tional, player 2 believes that player 1 believes that player 2 is rational, and 
player 1 believes that player 2 believes that... Thus, there is a common be-
lief/knowledge among the players if they all know it, all know that they all 
know it, and so on. Iterated dominance is a method of narrowing down the 
set of strategies of playing the game. Gibbons gives a formal definition of 
strictly dominated strategy, which I will summarise here. 

Definition 1  

The pure strategy is  is strictly dominated for player i if there exists  

'i is S∈   such that  ( ', ) ( , )i i i i i iu s s u s s− −> , is−∀ . 

If a player has a dominated strategy in a game, you need to know that this is 
the strategy the player will not use. Let us consider a crucial example – the 
Prisoners’ Dilemma. This game requires a single round of elimination of 
dominated strategies to solve the problem. The scenario is that two prisoners 
are interrogated and each has two strategies. The payoffs are as follows.  

For Prisoner 1, if he/she plays ‘Fink’, his/her payoff is either 0 or –6, which is 
higher than the payoff from playing ‘Mum’. This is also true for Prisoner 2. 
Thus, a rational player would never Mum. That is, a prisoner will always 

ii Ss ∈

Gibbons (1992) Section 
1.1.A ‘Normal-Form Rep-
resentation of Games’ 
and 1.1.B ‘Iterated Elimi-
nation of Strictly 
Dominated Strategies’ in 
A Primer in Game The-
ory. pp. 2–8. 
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choose ‘Fink’ without even knowing the other prisoner’s payoff. Therefore, 
(Fink, Fink) will be the outcome reached by two rational players.  

Figure 1.1 

 
You should be able to discuss the following points: 

1. The iterated deletion of strictly dominated strategies solution is the set 
of all the strategies that survive the indefinite process of iterated 
deletion of strictly dominated strategies. In some games, no strategies 
can be eliminated. However, in certain games, all strategies except one 
for each player can be eliminated, then that game is said to be 
dominance-solvable. 

2. The equilibrium outcome, (Fink, Fink), is neither optimal nor efficient, 
because if players can coordinate – ie (Mum, Mum), they would have 
obtained higher payoffs. Accordingly, (Fink, Fink) is Pareto 
dominated1 by (Mum, Mum). The result shows the value of 
commitment of playing strategy Mum credibly. (This point will be 
discussed later on in this module.)  

3. In a game, if all players are rational and there is common belief of 
rationality, each player will choose a strategy that survives iterated 
strong deletion.  

4. If multiple strategies are strictly dominated, then they can be 
eliminated in any sequence without changing the set of strategies that 
we end up with. 

Let us now practise with another example below. The game is according to 
Figure 1.1.1 of Gibbons, page 6. Make sure you know how to eliminate dom-
inated strategies iteratively. Please note that the order of deletion does not 
matter. 

 

1  When an outcome is Pareto dominated, it means that all the agents/players prefer other out-
comes. In contrast, an outcome is Pareto optimal if no other outcomes would be preferred 
by all the players. 
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Figure 1.2 

 
Step 1 For player 1, there is no dominated strategy. 
Step 2 Then for player 2, Right is dominated by Middle. Eliminate Right. 

Then, the game is reduced to a 2 × 2 game, as shown in Gibbons’ Figure 
1.1.2: 

Figure 1.3 

 
Step 3 In the remaining game, for player 1, Down is dominated by Up.Eliminate Down.  
Step 4 Once Down is removed for player 1. For player 2, Left is dominated by Middle. 

This gives us (Up, Middle) as the unique equilibrium. 

You should now know how iterated elimination of strictly dominated strate-
gies work, but have you noticed two drawbacks of the concept? 

• Assume that it is common knowledge that each player is rational. This 
assumption can be too strong under experiment. 

• Many games may not have dominated or weakly dominated 
strategies. Therefore, the criteria of dominance or weak dominance 
may not work in some games. We need to look at an alternative 
concept in the next section – the Nash equilibrium (NE). This concept 
is more precise – that is, the players’ strategies in a Nash equilibrium 
always survive iterated elimination of strictly dominated strategies, 
but not the reverse. Furthermore, all finite games have at least one 
Nash equilibrium. (This may involve mixed-strategy Nash equilibrium 
which we will discuss in Section 1.3).  

1.2 Nash Equilibrium  
We introduce the Nash equilibrium in this section with a reading from the 
key text by Gibbons (1992).  
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 Reading 1.2 

Please read Gibbons, Chapter 1, Section 1.1.C, ‘Motivation and definition of Nash equilib-
rium’, pp. 8–12. 

 As you read, make notes on the definition and uses of the Nash equilibrium. NE is a 
fundamental concept, and you should make sure that you are very familiar with its intui-
tion and be able to apply it later on in this unit. To clarify, all the Nash equilibria referred 
to in 1.1.C of Gibbons (1992) are pure strategy Nash equilibria. 

 

Definition 2 

A strategy profile ( )* *,i is s−  is a (pure strategy) Nash equilibrium if for each 

player i, 
* * *( , ) ( , )i i i i i iu s s u s s− −≥  

for all players i and all i is S∈ . 

This shows that an NE is any profile in which each player is choosing opti-
mally given the choices of the other players. NE represents a strategically 
stable situation in which no player anticipates higher payoff from unilateral 
deviation. That is, a Nash equilibrium is a set of strategies (one for each 
player), such that no player has incentive to unilaterally change his/her ac-
tion. For example, in a simple 2 × 2 game, both players know which strategy 
the other player is going to choose, and no player has an incentive to deviate 
from the equilibrium strategy because his/her strategy is a best response to 
his/her belief about the other player’s strategy.  

Now, let us look at some important examples used by Gibbons. Here, I high-
light the crucial points of solving these games. You should try to do so 
yourself. 

Example 1: Prisoners’ Dilemma Revisit – Games with Unique NE 

Figure 1.1 

 
Look at this game. It has a unique NE (Fink, Fink), because each player can 
deviate from the other strategy profile profitably. (Mum, Mum) and (Mum, 
Fink) cannot be NE because prisoner 1 would gain from playing Fink. Simi-
larly, prisoner 2 would deviate from playing (Mum, Mum) or (Fink, Mum). 

Gibbons (1992) Section 
1.1.C ‘Motivation and 
definition of Nash equi-
librium’ in A Primer in 
Game Theory. pp. 8–12. 
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Example 2: The Battle of the Sexes – Games with Multiple NE 

Figure 1.4 

 
This interesting game is a coordination game with certain conflict elements. 
A couple want to spend the evening together, but Pat wants to be together at 
the prize fight whilst Chris wants to go to the opera together. The game is 
shown in Figure 1.4. 

To solve this game, start with the strategy combination (Fight, Fight). 

1. Look at Chris’ payoffs. If Pat goes to the fight, is the fight optimal for 
Chris? Yes, because 1 > 0. 

2. Now look at Pat’s payoffs. If Chris goes to the fight, is the fight 
optimal for Pat? Yes, because 2 > 0. 

Thus, (Fight, Fight) is an NE. Similarly, (Opera, Opera) is also an NE. 
3. Now, consider the strategy combination (Fight, Opera). If Pat goes to 

the Opera, is Fight optimal for Chris? No, because it gives Chris a 
payoff of 0, and he can do better by going to the Opera, which would 
give a payoff of 2. 

Thus, (Fight, Opera) is not an NE. Neither is (Opera, Fight). 

In conclusion, there are two pure-strategy Nash equilibria in this game, 
namely (Opera, Opera) and (Fight, Fight). This actually shows a drawback of 
NE as a solution concept – it does not always provide a unique solution.  

Based on Examples 1 and 2, you should now be able to interpret the relation 
between iterated elimination of strictly dominated strategies and NE: 

• If a strategy profile, s*, is an NE, then it will survive iterated 
elimination of strictly dominated strategies. Meanwhile, if iterated 
elimination of strictly dominated strategies eliminates all but s* then 
s* is the unique NE (Prisoners’ Dilemma).  

• However, there can be strategy profiles that survive strictly iterated 
elimination of dominated strategies, but they are not NE – for 
example, (Fight, Opera) and (Opera, Fight) in the Battle of the Sexes. 

1.3 Mixed-Strategy Nash Equilibrium 
Before we introduce the third example, turn again to your key text by Gib-
bons (1992) to learn about mixed strategies. 
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 Reading 1.3 

Please read Gibbons (1992), Section 1.3.A, pp. 29–33. 

 Make sure your notes help you to identify the strategies.  

 

Example 3: Zero-Sum Games 

A zero-sum game is a game of conflict. Any gain for one player comes at the 
cost of its opponent. Think of tax policy. If the total tax amount is fixed, then 
the problem is about tax redistribution between people. A simple zero sum 
game is matching pennies as discussed in Section 1.3.A: a two-player game 
in which Player 2 gets 1 penny from Player 1 if both pennies match, and 
loses 1 penny if they don’t. The game is illustrated as follows. 

Figure 1.5 

 
This game has no pure strategy NE because no pure strategy (heads or tails) 
is a best response to a best response of the other player. At every pure strat-
egy set in this game, both players have an incentive to deviate. In this 
scenario, what would the players do? To find an equilibrium, a solution is 
randomising between playing Heads and Tails, and this randomisation is a 
mixed strategy. Each player could flip a coin and play Heads with probabil-
ity ½ and Tails with probability ½. In this way, each player makes the other 
indifferent between choosing Heads or Tails, so neither player has an incen-
tive to deviate. Gibbons has provided a formal definition of mixed strategy 
in the key text. 

Definition 3 

Let G be a game with strategy spaces 1 2, ,..., .IS S S  A mixed strategy iσ  for 
player i is a probability distribution on Si (over the set of pure strategies). 

Furthermore, by observing Figures 1.3.1 and 1.3.2 on page 32 of Gibbons, 
consider the two important concepts illustrated through these examples. 

1. A given pure strategy may be strictly dominated by a mixed strategy, 
even if the pure strategy is not strictly dominated by any other pure 
strategy.  

2. A given pure strategy can be a best response to a mixed strategy, even 
if the pure strategy is not a best response to any other pure strategy. 

A pure strategy is a special case of a mixed strategy, in which the probability 
distribution over a set of pure strategies for a player assigns a probability 
equal to one to a single pure strategy and a probability of zero to all the rest. 

Gibbons (1992) Section 
1.3.A ‘Mixed strategies’ 
in A Primer in Game The-
ory. pp. 29–33. 



Modelling Firms and Markets 

10  University of London 

A strategy is fully mixed, if it assigns to every action a non-zero probability. 
Now, we go back to the game of Matching Pennies. In a NE, if a player ran-
domises between two different actions, then the player is indifferent 
between the two actions. This means that the two actions must yield the 
same expected payoff. (It is very important for you to be able to calculate the 
probabilities and find the mixed NE.) 

Assume that player 1 plays a mixed strategy of Heads with probability r (and 
tails with probability 1 − r), and player 2 plays Heads with probability q. 

Figure 1.6 

 
Key idea: player 1 must be indifferent between playing Heads and Tails. 

Player 1’s expected payoff from playing Heads is:  

( ) ( )1 1 1 1 2q q q⋅ − + − ⋅ = −  

 Player 1’s expected payoff from playing Tails is:  

( ) ( )1 1 1 2 1q q q⋅ + − ⋅ − = −  

 These two expected payoffs must be equal: 

11 2 2 1 2q q q− = − ⇒ =  

Now, assuming player 1 randomises, we can work out the expected payoff 
for player 2. Still, player 2 must be indifferent between playing Heads and 
Tails. 

 Player 2’s expected payoff from playing Heads is:  

1 (1 )( 1) 2 1r r r⋅ + − − = −  

 Player 2’s expected payoff from playing Tails is:  

( 1) (1 ) 1 1 2r r r⋅ − + − ⋅ = −  

 These two expected payoffs must be equal: 

12 1 1 2 2r r r− = − ⇒ =  

 Review Question 1.1 

Thus, the mixed-strategy NE is {½H + ½T, ½H + ½T}. So this gives us two important 
questions: 

1. Are there any other equilibria in this game? 
2. If two players can choose any combination, why do they choose these probabilities? 
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1. Player 1 loses with probability: (1 ) (1 ) 1 (2 1)r q r q q r q⋅ + − ⋅ − = − + −  
and wins with probability: (1 ) (1 ) (1 2 )r q r q q r q⋅ − + − ⋅ = + −  

If 1 ,2q >  then 2 1 0q − >   the higher value of q, the lower chance of 

winning. Then, player 1 would choose Tails, r = 0.  

If 1 ,2q <  then 2 1 0q − <   the higher value of r, the higher chance 

of winning. Then, player 1 would choose Heads, r = 1. Therefore, there 
are no other mixed strategy equilibria.  

2. It is because these are the probabilities that make the other player 
indifferent. The probability of ½ is not randomising; ½ is the player’s 
best response to the other player’s belief – ie the best thing they can do 
facing uncertainty. Now let us look at the definition of mixed strategy 
NE.  

Definition 4 

A mixed-strategy profile * *( , )i iσ σ−  is a Nash equilibrium if and only if    

( ) ( )* * *, ,i i i i i iu u sσ σ σ− −≥  

for all i and .i is S∈  

Similar to pure strategy NE, mixed strategy NE models a steady state of a 
game in which players’ choices are regulated by probabilistic rules. 

 Reading 1.4 

Please now read Gibbons (1992) 1.3.B, pp. 33–48. 

 Make sure your notes are sufficient to enable you to revise the important points 
from them. 

 

Let us look at the best response correspondences. Gibbons has introduced the 
concept in pp. 42–43. The intuition is that it is the optimal action for a player 
as a function of the strategies of all other players. If there is always a unique 
best action given what the other players are doing, this is a function. If for an 
opponent’s strategy, a set of best responses is equally good, it is a correspond-
ence. 

Recall that player 1’s expected payoff from playing Heads (r = 1) if player 2 
plays q is:  

( ) ( )1 1 1 1 2q q q⋅ − + − ⋅ = −  

And player 1’s expected payoff from playing Tails (1 − r = 1) if player 2 
plays q is:  

( ) ( )1 1 1 2 1q q q⋅ + − ⋅ − = −  

Gibbons (1992) Section 
1.3.B ‘Existence of Nash 
equilibrium’ in A Primer 
in Game Theory. pp. 33–
48. 
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Best response for player 1: *

11 if 2
1( ) [0,1] if 2
10 if 2

q

r q q

q

 <

= =


>

 

Best response for player 2: *

11 if 2
1( ) [0,1] if 2
10 if 2

r

q r r

r

 >

= =


<

 

Best Response Correspondence below shows that both correspondences in-
tersect at only one point at which r = q = ½. This gives us the unique mixed 
strategy NE of this game.  

Figure 1.7 

 
We now go back to the Battle of Sexes. We have found the pure-strategy 
NEs, so how about the mixed-strategy NEs? 

Figure 1.4 

 
Let (r, 1 − r) be the mixed strategy in which Chris plays Opera with probabil-
ity r. Thus, you can analyse the game with the following steps. 

If Pat plays (q, 1 – q), Chris’s expected payoff from Opera is:  

2q + 0(1 – q) = 2q 

And Chris’s expected payoff from Fight is: 0q + 1(1 – q) = 1 – q 
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  Chris goes to Opera if 2q > 1 – q  q > ⅓ (ie r = 1) 

And Chris goes to Prize Fight if q < ⅓ (ie r = 0) 
Thus, if q = ⅓, any value of r is a best response. 

Similarly, if Chris plays (r, 1− r), Pat’s expected payoff from Opera is:  

r + (1 – r) 0 = r 

And Pat’s expected payoff from Fight is:  

0r + 2(1 – r) =2(1 − r)  

  Pat goes to Opera if 2r > 2(1 − r)  r > ⅔ (ie r = 1) 

And Pat goes to Prize Fight if r < ⅔ (ie r = 0) 
Thus, if r = ⅔, any value of q is a best response. 

Figure 1.8 

 
By drawing the best response function above, you can see that both corre-
spondences intersect at three points. Hence, there are three NEs in this 
game: {Opera, Opera}, {Fight, Fight} and {⅔ Opera + ⅓ Fight, ⅓ Opera + ⅔ 
Fight}.  

So which strategy is better, pure or mixed, in the Battle of the Sexes?  

To compare these strategies, let us compare Chris’s payoff in the mixed 
equilibrium. 

(2) (1 ) (0) (1 )(0) (1 )(1 )(1)
2 1 1 2 22 0 0 1
3 3 3 3 3

rq r q r q r q+ − + − + − −

= ⋅ ⋅ + + + ⋅ ⋅ =
 

This is the same as Pat’s payoff. Indeed, both of them are worse off in the 
mixed-strategy NE. Hence, one may think that the two players would want 
to avoid this equilibrium. 
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1.4 Existence of Nash Equilibrium 
By finding the mixed-strategy Nash equilibria in the above examples, we 
can now introduce Nash’s Existence Theorem. The theorem shows that 
given a game with a finite number of strategies for each player, there is at 
least one (mixed-strategy) Nash equilibrium. As you saw in your last read-
ing, the proof is based on Kakutani's fixed-point theorem, which is a 
generalisation of Brouwer’s fixed-point theorem. You should know the intu-
ition of this theorem, but you do not need to prove the theorem. This 
theorem shows that NE is ‘stronger’ than Iterated Deletion of Dominated 
Strategies – ie there is at least one solution to every finite strategic-form 
game. Furthermore, a NE cannot be strictly dominated, although it may be 
weakly dominated. To achieve the outcome of NE, it requires not only ra-
tionality but also common beliefs or expectations of what will happen in the 
game.  

1.5 Applications of Nash Equilibrium 
The theory of Nash equilibrium is a great tool to clarify the structure and 
equilibrium of duopoly and oligopoly markets. For instance, you can figure 
out how each firm reacts to its rival’s strategy, what the market equilibrium 
is, etc. The concepts of oligopoly date back to Cournot (1838) and Bertrand 
(1883). Cournot was the first to investigate non-cooperative competition be-
tween two producers – that is, the so-called duopoly problem. He assumes 
that two firms produce the same product and the price of the product de-
pends on the total quantity produced. Later on, Bertrand analysed price 
competition between two producers. He finds that each firm charges the 
price at the marginal cost in equilibrium, and it is the same under perfect 
competition. In this section, we apply the concepts of NE to both models. 

In a market, an important question for firms is how to choose between 
‘price’ and ‘quantity’ as the decision variables. The particular choice de-
pends on the specific situations of the industry. Kreps and Scheinkman 
(1983) adopt a two-stage game to explain the differences between the Ber-
trand and Cournot models. Usually firms first make long-run decisions by 
choosing their capacities and then decide their short-run prices. Your next 
reading considers these applications, and you should be able to analyse the 
following examples yourself. 

 Reading 1.5 

Please now read Gibbons Sections 1.2.A–1.2.C, pp. 14–26. Pay particular attention to 
Sections 1.2.A ‘Cournot Model of Duopoly’ and 1.2.B ‘Bertrand Model of Duopoly’. 

 

  

Gibbons (1992) Sections 
1.2.A ‘Cournot model of 
duopoly’ to 1.2.C ‘Final-
offer arbitration’ in A Pri-
mer in Game Theory. pp. 
14–26. 
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1.5.1 Cournot model of duopoly 

As you read above, you start with this: 

• Players: two firms  
• Strategy: a set of possible outputs (any nonnegative amount)  
• Payoff: profit of each firm.  

In a one-shot simultaneous game, firm i chooses its output level, iq , and has 
no fixed cost, but a unit cost ( )i i iC q cq= where c < a. The products are as-
sumed to be homogenous (ie they are perfect substitutes), so the market 
demand, ( )1 2p q q+ , determines the price. P is an inverse demand function: 

P(Q) = a − Q, where 1 2Q q q= + . Therefore, the payoff function can be de-
rived as follows: 

( ) ( )1 2( , ) ( )i i i i iq q q P Q c q a q q cπ − = − = − + −    

To solve NE, each firm i needs to choose iq  to maximise its profit function. 
Thus, for firm 1, 

( )*
1 1 2 1 1 2

0 0
max ( , *) max

i iq q
q q q a q q cπ

≤ <∞ ≤ <∞
 = − + −   

For each firm, first-order conditions (FOCs) with respect to 1q  and 2q  give 
the best response functions: 

( ) ( )* * *
1 2 1 2

1
2

B q q a q c= = − −  

( ) ( )* * *
2 1 2 1

1
2

B q q a q c= = − −  

Here, given that 0i

i

dB
dq−

< , the best responses are called strategic substitutes – 

that is, two products mutually offset one another. An increase in one firm’s 
output decreases the marginal revenues of the others.  

Now solving the system of equations gives 

* *
1 2 3

a cq q −
= =  

and 
( )2

*
3

a c
Q

−
= . Substituting *Q  into P(Q) = a − Q gives the NE price at 

2*
3

a cP +
=  

This game can be extended into n-firms as p c→  and n →∞ . 

Alternatively, this two-firm game is dominance-solvable, as demonstrated 
below. This means that iterated elimination of dominated strategies picks 
out the unique NE. 
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Suppose that the firm produces mq , then its profit would be 

( ),
2 2 2 2i m i i i

a c a c a c a cq q a q c qπ − − −
−  −  − −   = − + − = −        

 

Now suppose that the firm chooses to produce mq x+ , with x > 0, then the 
profit will be 

( ) ( ) ( ), ,
2 2i m i i i m i i

a c a cq x q x x q q q x x qπ π− − − −
− −  + = + − − = − +  

  
 

Hence, the monopoly quantity 
2m

a cq −
=  strictly dominates any higher 

quantity. Given that i mq q> is eliminated, then any ( )
4i i m

a cq B q −
< =  is 

dominated by 
4

a c−
. To see it, note  

( )3
,

4 4 4i i i
a ca c a cq qπ − −
− − −  = −  

   
. 

Thus,  

( ) ( )3
, ,

4 4 4 4i i i i m i i
a ca c a c a cx q x x q q q x x qπ π− − − −
− − − −     − = − + − = − + −      

      
 

After these two rounds of elimination, the quantities remaining in each firm 

i are limited to ,
4 2

a c a c− − 
  

. Repeating these arguments leads to ever-

smaller intervals. In the limit these intervals converge to the unique NE of 
* .

3i
a cq −

=   

However, the more-than-two-firm cases are not dominance-solvable. As ex-
plained above, using dominance to solve a game requires us to delete 
dominated strategies for each of the players; then to solve the smaller game 
using the same process until there is no further possible elimination. The 
game is dominance-solvable, if only single strategies remain.  

1.5.2 Bertrand model of duopoly 

Let us now consider the Bertrand model. Gibbons gives the details of hetero-
geneous products, but it is necessary for you to consider the case of 
homogenous products first. You should be able to understand the intuitions 
as well as derive the cases. 

• Player: two firms  
• Strategy: a set of possible prices (any nonnegative amount)  
• Payoff: profit of each firm.  
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Case 1: Homogenous Products 

In a one-shot simultaneous game, firm i chooses its price, pi, and has no 
fixed cost, but a symmetric unit cost c. The demand for firm i is  

( )

( ) if
( ), if
2
0 if

i i i

i
i i i i i

i i

D p p p
D pq p p p p

p p

−

− −

−

<
= =


>  

( )

( ) ( ) if
( ) ( ), if

2
0 if

i i i i

i i
i i i i i

i i

p c D p p p
p c D pp p p p

p p

π

−

− −

−

− <
 −= =


>  

 

where D(p) is the market demand. Therefore, when two firms have 
1 2c c c= = , the unique NE is to set 1 2p p c= =  in which each firm gets half 

of the market.  

To understand that, let us consider this: if 1p c> , firm 2 sets 2 1p p ε= −  
and gets the whole market. If 2p c> , firm 1 has the incentive to undercut the 
price further, so this cannot be an equilibrium. The intuition is that if a firm 
charges a lower price than its rival, then the firm will obtain the whole de-
mand. If two firms charge the same price, the market demand is split 
equally.  

Therefore, if all the firms are identical, ic c= , for all i, then p = c for any 
n ≥ 2, market price equals the marginal cost, and thus firms make zero prof-
its. This leads to the Bertrand paradox: having two firms in the industry is 
enough to obtain perfect competition (rather than achieve monopoly out-
comes). This seems implausible. 

Case 2: Heterogeneous Products 

The demand for firm i is  

( ),i i i i iq p p a p bp− −= − +  

where b > 0, so firm i’s product is a substitute for firm –i’s product. And 
firm i’s profit is 

( ) ( )( ) ( )( ), ,i i i i i i i i i ip p q p p p c a p bp p cπ − − −= − = − + −  

To solve the NE, each firm maximises its profit. For firm 1,  

( )( )1 1 2 1 2 1
0 0
max ( , *) max

i ip p
p p a p bp p cπ

≤ <∞ ≤ <∞
= − + −  

FOC gives the best response function,  

( ) ( )*
1 2 2

1
2

B p a bp c= + +  

Symmetrically,  
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( ) ( )*
2 1 1

1
2

B p a bp c= + +  

Solving the above two equations gives the unique NE at 

* *
1 2 2

a cp p
b

+
= =

−
 

Differentiating the product allows the firms to get out of the destructive 
logic of Bertrand price competition under the homogenous product case. 
Therefore, it is possible to achieve the equilibrium prices at a higher level 
than under perfect competition.  

1.5.3 Final offer arbitration 

Final offer arbitration by a third party has become a popular method of con-
flict resolution in many areas. It is used in the settlement of disputes under 
existing contracts, typically when the unions (eg police or some public ser-
vices) are prohibited from striking. The intuition is stated in Gibbons 1.2.C. 
You are not required to derive the equilibrium. In final offer arbitration, 
each party submits a final proposal to an arbitrator. The arbitrator chooses 
one of them. Different from conventional arbitration, the arbitrator is not al-
lowed to compromise the demands of the parties. The intuition behind the 
equilibrium is that each party has a trade-off. A more demanding offer 
yields a better payoff, but it will be less likely to be chosen by the arbitrator. 
If there is little uncertainty about the arbitrator’s preferred settlement, the 
parties are likely to make offers close to the mean because the arbitrator is 
very likely to choose the settlement close to the mean. As the uncertainty in-
creases, the parties’ offers become more demanding. This mechanism 
provides an incentive for the parties to reach a negotiated settlement.  

1.5.4 The problem of the commons 

In 1968, Hardin wrote an influential paper, named ‘The tragedy of the com-
mons’, in which he explains a crucial problem on the exploitation of the 
natural resources and environment. Without any automatic mechanism or 
incentive, resources are over-exploited because agents maximise their own 
benefits as a result of their selfish behaviour. The problem is the difference 
between public and private incentives. Indeed, this issue has become more 
and more important nowadays. It happens wherever there is a resource 
open to everyone, such as a hunting area, grazing land, etc.  

We first consider a simple example that is not mentioned in Gibbons. Con-
sider n farmers in a village with limited grassland and each farmer has the 
option to keep either one sheep or no sheep. The utility of a sheep from pro-
ducing wool is 1, and the pollution to the environment from a sheep is 5. Let

iX be a variable, either 0 or 1.  

th1  farmer keeps a sheep
0i

i
X

otherwise


= 

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Given the pollution is shared among all farmers, the utility of ith farmer,
( )i iU X , is  

( ) ( )1 25 ... n
i i i

X X X
U X X

N
+ + +

= −  

Could you derive the NE for all i if 5N ≥ ? This is not essential, but you 
should understand the reasoning behind it. The NE is 1iX = , because keep-
ing a sheep would add more utility to a farmer from wool than it would 
subtract utility from them due to pollution. Therefore, each farmer keeps a 
sheep and the utility for every farmer is −4. 

Consequently, this can cause excessive pollution, and the tax is likely to be 
imposed. But how much tax would that be? The tax should be equal to the 
total damage done to the environment. Therefore, the utility of ith farmer be-
comes 

( ) ( )1 25 ...
5 n

i i i i
X X X

U X X X
N

+ + +
= − −  

In this case, NE is 0iX =  for all i, since the farmer increases his utility by 
giving away his sheep. 

 Reading 1.6 

Please now read Gibbons Sections 1.2.D, pp. 27–29, for another example of tragedy of 
commons. Again, you are not required to derive the NE, but you should understand the 
intuitions. You should pay particular attention to the equations (the first-order conditions) 
below, which relate to the NE 

( ) ( )1* * ' * 0v G G v G c
n

+ − =  

and the social optimum 

( ) ( )** ** ' ** 0v G G v G c+ − =  

 

Here, the value to a farmer of grazing a goat on the green when a total of G 
goats are grazing is ( )v G  per goat. Intuitively, ** *G G< and the difference 

between NE and social optimum is due to ( )'* *i
G v G
n

 and ( )** ' **G v G . 

These externalities cannot be easily internalised. Therefore, the problem of 
the commons shows the inefficiency of NE. 

1.6 Conclusion 
Unit 1 has provided an introduction to game theory. It began with the static 
games of complete information. You have studied the basic concepts, such 
as pure- and mixed-strategy Nash equilibria. You have also studied the suf-
ficient conditions and intuitions of the existence of Nash equilibrium. You 

Gibbons (1992) Section 
1.2.D ‘The problem of 
the commons’ in A Pri-
mer in Game Theory. pp. 
27–29. 
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have applied NE to simple oligopoly games (Cournot & Bertrand), and eval-
uated the intuition of final-offer arbitration and the problem of the 
commons. To check your understanding of this, look again at the Learning 
Outcomes at the beginning of the unit and make sure you can achieve them. 

In the next unit, you will look at another type of game – dynamic games of 
complete information. That will allow you to apply the concept to more 
complicated market situations. 

 Optional Reading 1.1 

If you would like to explore the ideas behind the Nash equilibrium you might like to read 
his article: 

Nash JF (1950) ‘Equilibrium points in N-person games’. Proceedings of the National Acad-
emy of Sciences, 36, 48–49. 
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1.7 Exercises 

 Exercise 1.1 

Solve Gibbons’ Problem 1.2 on page 48.  

 Exercise 1.2 

Consider the n-player Cournot model. Each firm chooses its own quantity to produce, 
0iq ≥ , simultaneously. The price for each unit is given by p = 1 – Q where 

1
n

iiQ q
=

=∑ .  

Assuming no costs, the profit of each firm is .i ipqπ =  

a) Find the NE and show that it is unique and symmetric. 
b) Suppose that n = 2. Which strategies for each player survive iterated deletion of 

strictly dominated strategies? 
c) Now suppose that n = 3. Reconsider part (b). 

 Exercise 1.3 

Show that the unique profile of strategies that survives iterated removal of strictly domi-
nated strategies is a unique Nash Equilibrium. 

 Exercise 1.4 

There are two firms in an industry. Let q1 and q2 be the output of Firm 1 and Firm 2 and 
Q = q1 + q2 be total output. The inverse demand in the industry is P(Q) = 45 − Q. The 
cost function for each firm is  
C(qi) = 9qi. 

a) Assume a two-firm Cournot model. Calculate Firm 1’s best response function 
q1 = R(q2) to the output choice of Firm 2, and Firm 2’s best response function 
q2 = R(q1) to the output choice of Firm 1.  

b) Compute the equilibrium price, quantities, (P, q1, q2) and each firm’s profit level. 
c) Assume a two-firm Bertrand model. Solve for the equilibrium prices and outputs of 

Firms 1 and 2, assuming that consumers will split evenly between the two firms, if 
the firms offer the same price. Compute each firm’s profit level. 

 Exercise 1.5 

Given that u > w, y > m, n > v, and x > z, consider the following normal form game, 
where player 1 chooses rows and player 2 chooses columns.  

Figure 1.9 
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a) Prove that this game has no pure strategy Nash Equilibrium. 
b) Solve for the mixed strategy Nash Equilibrium in terms of the parameters. 

 Exercise 1.6 

Solve Gibbons’ Problem 1.12, p. 51. 
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1.8 Answers to Exercises 

 Exercise 1.1 

For player 1, B is strictly dominated by T  Eliminate the row of B. 

Then for player 2, C is strictly dominated by R. Thus, the games can be reduced to a 
2 × 2 game. The strategies that survive IESDS are: T and M for 1, and L and R for 2. 

The pure strategy Nash Equilibria of the game are (M, L) and (T, R). 

 Exercise 1.2 

a) Each player i is to maximise its profit, by solving 

max i ipqπ =  

( ) ( )1 1i i i i iQ q q q qπ −= − = − −  

FOC with respect to qi implies 

1 2 0i
i i

i

d q q
dq
π

−= − − =  

1
2

i
i

qq −−
=  or 1iq Q= −  

Since this condition is the same for all i, the equilibrium must be symmetric. Solving, 
we obtain 

1 ;
1iq

n
=

+
 ;

1
nQ

n
=

+
 1 ;

1
p

n
=

+
 

( )2
1

1
i

n
π =

+
 

b) Since 2 0q ≥ , FOC above gives us 1 1
2q ≤  (all other strategies are strictly domi-

nated by 1 1
2q = ). Since 1 1

2q ≤ , it gives 2 1
4q ≥ ; and this gives 1 3 ,8q ≤  so 

2 5 .16q ≥  Repeated iterations and symmetry give 1 2 1 .3q q= =  

c) Since 2 0q ≥ , FOC above gives us 1 1
2q ≤  (all other strategies are strictly domi-

nated by 1 1
2q = ). Since 1 1

2q ≤  and 3 1
2q ≤  it gives 2 0.q ≥  Iterated deletion 

of strictly dominated strategies implies only that 1 2 3 10 , , 2q q q≤ ≤ . 

 Exercise 1.3 

This proof can be done by explaining the intuition of Iterated Deletion of Dominated 
Strategies and Nash Equilibrium. 

First, if a pure strategy i is S∈ for player i is strictly dominated by another pure strategy 

'i is S∈  then any mixed strategy that has positive probability to is  is strictly dominated 

by some other mixed strategy. If a pure strategy is not strictly dominated by another pure 
strategy, it is also not strictly dominated by any mixed strategy. 



Modelling Firms and Markets 

24  University of London 

Second, if a mixed strategy iµ  for i has positive probability only to pure strategies that 

are not strictly dominated then iµ , then it is not strictly dominated by any other mixed 

strategy. 

Third, if each player 1, , 1i i N= −  has a strictly dominant strategy is  ( is strictly dom-

inates every other strategy), then the game is dominance-solvable.  

There is a unique solution to iterative deletion of strictly dominated strategy. 

 Exercise 1.4 

a) Firm i maximises its profit taking the Firm −i’s choice, iq− as given. 

( )max 45 9
i

i i i i
q

q q q q−− − −  

Set FOC equal to zero, 

45 2 9 0i
i i

i

d q q
dq
π

−= − − − =  

Solving this gives the best response function:  

36
2

i
i

qq −−
=  2

1
36

2
qq −

=  and 1
2

36
2

qq −
=  

Solving these 2 equations gives: 1 2 12q q= = . The equilibrium price is 45 – 12 – 
12 = 21. 
Therefore, the profit of each firm will be 

( )1 2 45 24 12 9 12 144π π= = − × − × =  

b) In price competition, firms always want to undercut their rivals slightly to capture 
the whole market, as long as the rival’s price is above the marginal cost. Therefore, 
the only equilibrium under Bertrand competition is for the two firms charging P1 = 
P2 = MC = 9. In such a case, no firm has an incentive to deviate, because any price 
above the marginal cost will not sell while any price lower than the marginal cost 
incurs a loss. Consequently, 45 45 9 36Q P= − = − = . Symmetrically, 

1 2 18q q= = . This leads to 1 2 0.π π= =  This shows that the market outcome un-
der Bertrand competition is identical to the perfectly competitive market outcome. 

 Exercise 1.5 

First, state the definition of NE. 

 There is no pure strategy NE in this game.  

  Under (U, R), player 1 will deviate to D. 

  Under (D, R), player 2 will deviate to L. 

  Under (U, L), player 2 will deviate to R. 

  Under (D, L), player 1 will deviate to U. 

To find the mixed strategy NE, suppose player 1 plays U with probability p and player 2 
plays L with probability q. Therefore, 

The expected payoff for player 1:  

( ) ( ) ( ) ( )1 11 1EU U qu q m qw q y EU D= + − = + − =  
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 
( ) ( )

y mq
y m u w

−
=

− + −
 

The expected payoff for player 2:  

( ) ( ) ( ) ( )2 21 1EU L pv p x pn p z EU R= + − = + − =  

 
( ) ( )

x zp
x z n v

−
=

− + −
 

 Exercise 1.6 

Let p denote the probability that player 1 plays T, and q denote the probability that 
player 2 plays L. In a mixed strategy equilibrium, the following two conditions have to be 
satisfied: 

i) Given q, player 1 is indifferent between playing T and B. Therefore, 

( )2 3 1q q q= + −  

 3 / 4q =  

ii) Given p, player 2 is indifferent between playing L and R. Therefore 

2(1 ) 2p p p+ − =  

 2 / 3p =  

The mixed strategy NE is 
2 1
3 3

T B + 
 

and
3 1
4 4

L R + 
 

. 
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